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Abstract: This article approaches its subject in a philosophical manner. It 

has as objective to formulate a problem. The formulation of the problem is 
based on the Dedekind cuts and on a continuous function nowhere 

differentiable (it has no tangent line to the points of its graph): the Takagi-

Knopp function. The study mainly approaches two contents: one from the 

algebra and one from the mathematical analysis. The interpretation of the 
formulation requires an epistemological frame. This study is only a first step. 

The next part of the study is the construction of another continuous function 

nowhere differentiable, for time. The main intention is to construct time only 
from “moments” understanding them as points of the graph in which the 

function is not differentiable. 
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”Mathematical propositions express no thoughts. 

In life it is never a mathematical proposition which we need, but we use 

mathematical propositions only in order to infer from propositions which do not 

belong to mathematics to others which equally do not belong to mathematics.”
1
 

 

                                                
1 Wittgenstein Ludwig - Tractatus Logico-Philosophicus, Ed. Humanitas, Bucureşti 2001, 

P 6.21; P 6.211. 
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For an epistemological analysis of the consistency and limits implied 

by a mathematical construction burdened with physical significance, this 

presentation has chosen, on the one hand, the construction of real numbers 

by Dedekind cuts for the operation of physical measurements. On the other 

hand, it has chosen a simple mathematical special function. This function 

meets two essential requirements: it is a continuous function and it is 

nowhere differentiable. The function meets the first condition as a 

mathematical requirement imposed by the most important attribute of 

physical time: continuity. The second condition is the mathematical 

expression of the intention to construct time only from “moments” 

understood as points of the graph in which the function is not differentiable 

(it has no tangent line to the points of its graph). The chosen function is just 

a first support of critical analysis of the problems which appear through 

such a construction. For the sake of clarity of both the exposition and the 

analysis, the presentation is made up of certain stages which try to 

intuitively suggest that which at the end is abstract and unintuitive. The 

present paper presents the first two stages.  

In the graphical representation of the formulation of the problem, 

and for the sake of simplicity and suggestiveness of the exposition the axis 

Ot(�) will be called “clock”. The graph of function K(t(�) – henceforth 

noted K(t) – or the mathematical curve Θ will be called TIME. We shall 

assume, in relation with the effective physical measurements that can be 

made by a clock, that the clock only indicates rational numbers, in other 

words, the dial of the clock corresponds to the rational numbers set QQQQ . We 

shall also assume that the physical measurement with a clock has its limits 

in principle, “that what a clock cannot measure”, and Dedekind cuts 

correspond to these. However, in “reality”, even in the absence of 
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measurements, Dedekind cuts correspond to moments of time. Time Θ  is in 

this context the mathematical image of all possible indications of a clock 

together with the moments of time that a clock cannot record. To each result 

of an operation of measurement with the clock corresponds a point in time: 

a moment ( )tθ , but there are, and this presupposition is essential in the 

present construction, points in time ( )tθ′  which do not correspond to an 

operation of measurement with a clock. The set of all these points in time 

( )tθ  and ( )tθ′  is TIME. Without any further appeal at this point to 

mathematical demonstrations and their possible relevance, it is accepted that 

both the measurement of time with its limitations and time as such are 

continuous. 

 

Dedekind cuts
2
 

  

Dedekind cuts
3
 are a way to build the real numbers R (R set) -the 

rational and irrational numbers- starting from the rational numbers set QQQQ . 

Further, it will be given a mathematical characterization of them that agrees 

to the present construction. 

A Dedekind cut represents a partition of the rational numbers set in 

two sets M and N so that are satisfied the following requirements:
4
 

 1.) QQQQQQQQ ⊂⊂ N ,M  

                                                
2 The next intuitive presentation follows, broadly, the text from 

”en.wikipedia.org/wiki/Dedekind_cut” and Breaz Simion, Covaci Rodica - Elemente de 

logică, teoria mulțimilor și aritmetică, Editura Fundației pentru Studii Europene, Cluj-

Napoca, 2006 and Purdea I., Pop I., Algebră, Editura Gil, Zalău, 2003 
3 Dedekind cuts are named after the German mathematician Richard Dedekind (he invented 

them).  
4 The definition of the partition of a set is given in a lower reference. 
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2.) ∅≠∅≠ N ,M , M and N are non-empty sets. 

3.) M contains no greatest element. 

4.) yxNyMx <⇒∈∀∧∈∀  

  With this requirements, the Dedekind cut will be represented simply: 

( )N,M . 

There are two possibilities (cases): 

1. If the set N has a smallest element ”q” among the rational 

numbers QQQQ  then the cut corresponds to that rational number. In this case, 

the sets which define the Dedekind cut are: ( )q,M ∞−=  and [ )+∞= ,qN , 

and we say that the rational number q is represented by the cut ( )N,M ). In 

other words, if the set N has a smallest element among the rational numbers 

then the cut represents that rational number. 

2. If the set N contains no smallest element among the rational numbers 

then the cut defines a unique irrational number which, intuitively speaking, 

fills the gap between the two sets of rational numbers: M and N. The sets 

which define the Dedekind cut in this case are: ( )q,M ∞−=  and 

),q(N +∞= . In this way, M contains all rational numbers to the ”break” 

between the sets of rational numbers M and N, next, N contains all rational 

numbers starting from  the ”break”. ( QQQQ=∪ NM ). In other words, 

suggestively but still inadequate, M contains all rational numbers ”smaller 

than” the gap (cut), and N contains all rational numbers ”bigger than” the 

cut (gap).  

The formulation is inadequate because it was not yet defined a 

partial order relation which encompasses both rational numbers and 

irrational numbers (in as will be the real numbers set and its order relation). 

Thus, a certain Dedekind cut can be associated with a ”mathematical 
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existence” which denotes an irrational number that doesn’t belong to one of 

the two sets M and N covering  the set of rational numbers QQQQ ( )QQQQ=∪ NM . 

The real numbers set is equivalent with the set of all Dedekind cuts of QQQQ . In 

this construction each real number, rational or irrational number, 

corresponds to a unique cut. 

 ”Whenever, then, we have to do with a cut produced by no rational 

number, we create a new, an irrational number, which we regard as 

completely defined by this cut; we shall say that the number corresponds to 

this cut, or that it produces this cut. From now on, therefore, to every 

definite cut there corresponds a definite rational or irrational number, and 

we regard two numbers as different or unequal always and only when they 

correspond to essentially different cuts.”
5
 

 Complementary to this intuitive introduction for Dedekind cuts, we 

present an abstract definition of them in the Zermelo-Fraenkel axiomatic 

system.
6
 

A cut is  a subset QQQQ⊆r , together with the following properties: 

(1) ∅≠r ; 

(2) QQQQ≠r ; 

(3) rpqprq ∈⇒<∧∈ ; 

(4) r conteins no greatest element. 

Analysing the results of this definition we remark that it is 

compatible with the above presentation. The result is a new number set: the 

                                                
5
 www.gutenberg.org/files/21016/2106-pdf.pdf: Dedekind Richard - Essays on The Theory 

Of Numbers I. Continuity and Irrational Numbers II. The Nature and Meaning of Numbers, 
authorised translation by Wooster Woodruff Beman Professor Of Mathematics in The 

University of Michigan Chicago, The Open Court Publishing Company London Agents 

Kegan Paul, Trench, Trübner & Co., Ltd. 1901, Continuity and Irrational Numbers, 

Section IV: Creation of irrational numbers, p. 7 
6 Breaz Simion, Covaci Rodica - Elemente de logică, teoria mulțimilor și aritmetică, 

Editura Fundației pentru Studii Europene, Cluj-Napoca, 2006, p. 148. 
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real numbers set. In the sense presented here, the Dedekind cuts among the 

real numbers may be considered as cuts among the rationals. It can show 

that every cut of real numbers set is identical to the cut produced by a 

certain real number which can be identified as the smallest element of the N 

set. 

In the geometric representation, the ”number line” of real numbers, 

intuitive, is a picture of a straight line on wich every point corresponds to a 

real number and every real number corresponds to a point. In the context 

introduced above, every point (real number) on the number line is defined 

as a Dedekind cut of the rational numbers set and is a continuum without 

any gap. The intuitive picture is that when two straight lines cross, one is 

said to cut the other. The Dedekind’s construction of the number line 

ascertains us that the set of crossing points is not empty.  The two straight 

lines have always one point in common: each of them does determine (does 

define) a Dedekind cut on the other.  

 The sets M and N define simmetrically a Dedekind cut because  

each of them does determine the other. With these significations it can be 

introduced a simplicity of the language. If we take arbitrarily as reference 

set the M set,  the set without the greatest element, this set M can be defined 

as a Dedekind cut, but only in the next cases (which are self-understood): 1. 

( )q,M ∞−=  and [ )+∞= ,qN  and 2. ( )q,M ∞−=  and ),q(N +∞= . 

The intuitive concept of ”ordering” is represented by a partially 

ordered set. A partially ordered set is a set together with a binary relation. This 

indicates that, for certains pairs of elements in the set, one of the elements 

precedes the other element. The partial order reflects the fact that not every 

pair of elements need be ”order-related”. There are some pairs of elements that 
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neither element precedes the other one in the set. The partial order generalize 

the total order in wich every pair of elements are ordered-related.  

An important property of certain ordered sets Q  is ”completeness”: 

every nonempty subset Q′ (of the Q  set) that is bounded above has a 

supremum that is also an element of Q . 

The rational numbers set ( )≤,QQQQ  is a non-empty ordered set. More, 

( )≤,QQQQ  is a totally ordered set. More, it is a lattice: for 

{ } { } .q,qsup  q,qinf ,q,q 212121 QQQQQQQQQQQQ QQQQQQQQ ∈∃∧∈∃∈∀  But the rational 

numbers set ( )≤,QQQQ , in the sens of ”completeness” defined above, is 

”incomplete”. It is not a complete lattice because a complete lattice is a 

partially ordered set in which all subsets have a supremum in the partially 

ordered set.
7
  

A classical example is this: 

{ } { }[ ]
RRRR
QQQQQQQQQQQQQQQQ

∈
∉=<∈∉<∈ 22qqsup ,2qqsup 22 . Interpreting this 

example, the supremum of a subset of rational numbers is not a rational 

number [it is an irrational number ˝(real)], which means that the rational 

number ( )≤,QQQQ  is ”incomplete”.  

 Let ( )≤,Q  be an ordered set (particularly, the rational numbers set 

( )≤,QQQQ , and QQ ⊆′ . Let  
( )
( ) ( )



≤⇒≤′′∈′∀∧∈

≤′⇒′∈′∀∈

QQQ qqqq ,QqQq ii

                      qqQq Q,q i
be two 

conditions. In this case ”q” is called supremum (or the least-upper-bound) of 

the Q′  set in Q  set: Qsupq Q
′= . One may define the supremum for any 

subset of a partially ordered set. In this case, we say that respective set has 

                                                
7 In fact, the notion of complette lattice generalizes the supremum property of the real 

numbers. 
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the least-upper-bound [supremum] property if every subset of it with the 

property ( )i  also has the property ( )ii .
8
 The supremum property is, for 

certain ordered sets, a fundamental property in mathematics. ”The 

supremum property” is another form of the completeness axiom (or the 

axiom of Cantor-Dedekind). It is intimately related to the construction of the 

real numbers using Dedekind cuts. The example above, indicates that the 

rational numbers set ( )≤,QQQQ  does not have the supremum property under the 

usual order. 

The construction of the real numbers using Dedekind cuts has the 

advantage of defining the irrational numbers as the supremum of certains 

subsets of the rational numbers. Moreover, the important feature of 

Dedekind cuts is to operate with number sets that are not complete. 

 The cut itself can represent a number which does not exist in the 

original set, in this case the rational numbers set ( )≤,QQQQ . It is very important 

the fact that a cut (simbolized by c) can represent a new number, even 

though among the numbers belonging to the sets M and N we do not find 

the number c.  

Relative to previous example, if the sets M and N contain rational 

numbers only, they can be cut at 2  putting every negative rational number 

together with every positive rational numbers whose square is, strictly less 

than 2, in the set { }2qM <⇒≥∈= 2q0qQQQQ  and, similarly, putting every 

rational number whose square is greater than or equal to 2, in the set 

{ }2qN ≥∧>∈= 2q0qQQQQ . 2  is not a rational number. In this way, all the 

rational numbers ( )≤,QQQQ  are partitioned into two sets M and N (with 

                                                
8 The so called ”supremum property” is in fact equivalent to ”the completeness axiom”. 
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∅=∩ NM ), the partition itself signifying a new number (an irrational 

number).
9
  

 For our interests it is important the fact that we can order a Dedekind 

cut ( )N,M ′′  as less than another Dedekind cut ( )N,M  by the 

instrumentality of subset and inclusion. The Dedekind cut ( )N,M ′′  is less 

than the Dedekind cut ( )N,M  if M′ ) is a subset of M ( MM ⊆′ ) or, 

equivalently, if N is a subset of N′ ( NN ′⊆ ). In this way, the inclusion 

relation of the sets ( ⊆ ) can be used to represent the ordering of Dedekind 

cuts, and the other relations ( ≤ ) can be also constructed similary. 

 As well for our interests, it is important that the set of Dedekind cuts 

is a linearly ordered set. The construction by Dedekind cuts makes it 

possible the constraction of the real numbers. 

  

An example of a continuous function, nowhere differentiable 

Let be the next continuous function, nowhere differentiable: the 

Takagi-Knopp function. 

 Let H be a parameter, 1H0 <<  and let ( )tg  be a periodic function with the 

period ”1”, ( )tg  is defined on the interval [ ]1,0 : 

( )
( )








≤≤

≤≤
=

1t
2

1
   ,t-12

2

1
t0   , t2

tg  

                                                
9 Let S be a non-empty set.) It is called: partition of the set S a set P of non-empty subsets 

of S which satisfies the following conditions: 

( )
( )

( )                             empty.  is  P  of  elementsdistinct     any  two  ofon  intersecti  The ,PPPP  iii

                                                                                S.set      theis P  of   elements    theofunion    The ,PS   ii

                                                                                                        set.empty     he contain  tnot    does P P,   i

jiji

i
i

∅=∩⇒≠

=

∉∅

U
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We observe that the period is ”1”.  

( ) ( ) ( ) ( ) ( )

( ) 







∈∀≠








∈∀≠=








−=⋅=









=+==−==⋅=

1,
2

1
t for 0t-12 ,

2

1
0,tfor  02t ,1

2

1
12

2

1
2

2

1
g

and  010g0g ,01121g  ,0020g

 

We olso observe that the function is a linear function on each interval: 

Let ( )tK  be the Takagi-Knopp function: 

( ) ( )tn2g
0n

nH2tK ∑
∞

=

−=  

The Takagi-Knopp function ( )tK  for 
2

1
H =   is: 

( ) ( )t2g2tK
n

0n

2

n

∑
∞

=

−

= . 

For a sum with a finite number of terms, the function  ( ) ( )t2g2tK
n

k

0n

2

n

k ∑
=

−

=  

with 1k +  terms is: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )t2g
2

2
...t4g

2

1
t2g

2

2
tg

t2g2...t2g2t2g2t2g2t2g2tK

k
k2

k2

k

22

2

12

1

02

0

n
k

0n

2

n

k

−

−−−−

=

−

++++=

=++++==∑
 

For ( ) ( )tgtK ,0k 0 == . In this case, the graphical representation of the 

function ( )tK 0  is the same with the graphical representation of the function 

( )tg : 

 

 

 

 

 

g(t) 

1      
2

1
  

1 

0 

K0(t) 

t  

1 

0 

t 1      
2

1
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For ( )tK,1k 1=  is a linear function on intervals: 

( ) ( ) ( ) ( ) ( ) ( )t2g
2

2
tgt2g2t2g2t2g2tK 2

1

02

0

n
1

0n

2

n

1 +=+==
−−

=

−

∑ . 

We observe that: 

( )
( )








≤≤

≤≤
=

1t
2

1
   ,t-12

2

1
t0   , t2

tg

 ( )
( )

( )
( )

( )







≤≤

≤≤
=⇔









≤≤

≤≤
=

2

1
t

4

1
   ,2t-12

4

1
t0   ,t4

t2g

1t2
2

1
   ,2t-12

2

1
t20   ,  t22

t2g  

We observe that ( ) ( )tgt2g ′=  is a periodic function with the period ”
2

1
” 

and, consequently, for example:  1
4

1
g

2

1

4

1
g

4

3
g =








′=








+′=








′   și 

( ) 0
2

1
g

2

1

2

1
g1g =








′=








+′=′ . We observe that ( ) ( )tgt2g ′=  is a periodic 

function with the period ” 
2

1
”: 

In this way, the graph of the function ( )t2g  on the interval [ ]1,0  is: 

 

 

 

 

 

 

1 

0 

( ) ( )tgt2g ′=  

t 

1      
4

3
      

2

1
      

4

1
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For the functions of ( )tK1 : ( ) ( ) ( )t2g
2

2
tgtK1 +=  it can be writed: 

( )
( )








≤≤

≤≤
=

1t
2

1
   ,t-12

2

1
t0   , t2

tg  

 ( )
( )








≤≤

≤≤
=

2

1
t

4

1
   ,2t-12

4

1
t0   , t 22

t2g
2

2
 

The complete representation of the function ( )tK1  on the interval [ ]1,0  is: 

( ) ( ) ( )tg
2

2
tgtK1

′+=  

We have the next particular values for drawing the graph of the function 

( )tK1 : 

( ) ( ) ( ) 0000g
2

2
0g0K1 =+=′+= , 

2

21
1

2

2

2

1

4

1
g

2

2

4

1
g

4

1
K1

+
=⋅+=








′+








=








, 

10
2

2
1

2

1
g

2

2

2

1
g

2

1
K1 =⋅+=








′+








=








, 

2

21

2

2

2

1
1

2

2

4

3
g

4

3
K1

+
=+=⋅+








=








, 

( ) ( ) ( ) 0001g
2

2
1g1K1 =+=′+=  

The graph of the function ( )tK1  is: 
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For ( )tK,2k 2=  is also a linear function on intervals: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t4g
2

1
t2g

2

2
tgt2g2t2g2t2g2t2g2tK

22

2

12

1

02

0

n
2

0n

2

n

2 ++=++==
−−−

=

−

∑
 

It follows:  

( )
( )

( )
( )

( )







≤≤

≤≤
=⇔









≤≤

≤≤
=

4

1
t

8

1
   ,4t-12

8

1
t0   ,t8

t4g

1t4
2

1
   ,4t-12

2

1
t40   ,  t42

t4g  și   

( )








≤≤

≤≤
=

4

1
t

8

1
   4t,-1

8

1
t0   ,t4

t4g
2

1
 

We observe that  ( ) ( )tgt4g ′′=  is a periodic function with the period ” 
4

1
” 

and, consequently, for example: 

1
8

1
g

4

1

8

1
g

8

3
g =








′′=








+′′=








′′   

and 

( )tK1

 

t 0 

4

1

2

1

4

3 1 

2

21 +

 
1 
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( ) ( ) 00g
4

1
0g

4

1
g

4

1

4

1
g

2

1
g

4

1

2

1
g

4

3
g

4

1

4

3
g1g =′′=








+′′=








′′=








+′′=








′′=








+′′=








′′=








+′′=′′

 

 In this way, the graph of the function  ( )t4g  on the interval [ ]1,0  is: 

 

 

 

 

 

 

 

We have in a table the next particular values for drawing the graph of the 

function ( )tK 2  on the interval [ ]1,0 : 

 

t 0 

8

1
 

4

1
 

8

3
 

2

1

 

8

5
 

4

3
 

8

7
 

1 

( )tg  0 

4

1
 

2

1
 

4

3
 

1 

4

3
 

2

1
 

4

1
 

0 

( )tg
2

2
′

 

0 

4

2
 

2

2
 

4

2
 

0 

4

2
 

2

2
 

4

2
 

0 

( )tg
2

1
′′  

0 

2

1
 

0 

2

1
 

0 

2

1
 

0 

2

1
 

0 

( )tK 2  0 

4

23 +

 

2

21+

 

4

25 +

 

1 

4

25 +

 

2

21+

 

4

23 +

 

0 

 

The graph of the function ( )tK 2  is: 
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0 

( ) ( )tgt4g ′′=  

t 
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8
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4

3
     

8
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1
     

8
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4

1
     

8
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For 3k =  we shall only sketch the function ( )tK3 : 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )t8g
4

2
t4g

2

1
t2g

2

2
tg

t2g2t2g2t2g2t2g2t2g2tK 32

3

22

2

12

1

02

0

n
3

0n

2

n

3

+++=

=+++==
−−−−

=
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The graph of the function ( )t8g  on the interval [ ]1,0  is: 

 

The graph of the function (the morphology) ( )tK3  on the interval [ ]1,0  is: 

 

 

 

 

 

 

 

 

 

 

For ∞→n  the fragmentation of the curve and, implicitely, its 

global irregularity of this, grow considerably. In the first graph 

(morphology), for n=0 there is no tangent line to the curve in one point 

only; for n=1 there are not tangents to the curve in three points; for n=2 

there are not tangents to the curve in seven points; for n=3 there are not 

tangents to the curve in fifteen points etc., for ∞→n  the Takagi-Knopp 

function remains a continuous function but nowhere differentiable. 
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The fractal dimension measuring the global irregularity of the curve 

is: ( ) H2 −=Γ∆ . In the example above we considered 
2

1
H =  and, 

consequently, the fractal dimension of the curve was ( ) .5.1=Γ∆ Let us  

mention  that the irregularity of the curve changes with the change of the 

fractale dimension for 
4

1
 ,

2

1
 ,

4

3
 ,1H = . 

For a more simple mathematical exposure, the continuous function 

( )tK3  will be generally considered to be representative, and it will be 

denoted: ( )tK . 

 

 

 

 

 

 

 

 

 

 

 

 

 We shall consider a set of ordered pairs of points ( )( )tK,t (t is for 

t(�)), in a plain. In this case, the abscissa t  has the physical dimension of the time: 

we suppose that each Dedekind cut has this physical dimension  even if the clock 

 

 

K

 

γ(t) 
K(t) 

( )tosc
τ

0t                tt k  τ+τ−     t       t  t

 

 



 24 

cannot measure it. The ordinate ( )itK  is the value of a physical quantity
10

 (a 

system state) in it  point. We shall consider the morphology of the dynamics 

( )tK  as being the graph Γ  of this continuous function on the interval 

[ ]k0 t,t . We construct a function, the parametrization ( )tγ : ( )( )tK,tt a . 

We call local arc of parametrization (or ”fragment of morphology”) -noted 

( ) ( )τ+γτ−γ t t
)

- the part of the graph Γ  corresponding to the abscissas 

from the interval [ ]τ+τ− t,t ; interval which represents the projection of the 

fragment of morphology ( ) ( )τ+γτ−γ t t
)

on the Ot axis. The projection of 

the fragment of morphology on the OK axis is the interval 

( ) [ ] ( ) [ ][ ] ( )tosct,tttz sup,t,tttz inf τ=τ+τ−∈τ+τ−∈ . 

 The basic assumption of this analysis is the following: the time is 

exterior to the operation of physical measurement (performed by a clock 

and symbolized here by t(�)). In this way the above representation it will 

be understood like this: 

 

 

 

 

 

 

 

 

 

                                                
10 O mărime fizică este o proprietate fizică a unui fenomen care poate fi cuantificată prin 

măsurători (A physical quantity is a physical property of a phenomenon that can be 

quantified by measurements.) 
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The further requirement deriving from this formulation of the problem is the 

construction of a continuous function nowhere differentiable which should 

express as good as possible the "physical picture" of the current time.  
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