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Abstract:This philosophical-algebraic presentation aimed at a simple and concise exposition of 

notions and demonstrations, especially in class algebra. The demonstrations were constructed so 

that they configure the epistemological objectives on a logical linguistic level, of interest for this 

analysis: conceptual clarifications and the loading of logical symbols with mathematical 

signification. My hypothesis is that the propositions of logic have no mathematical content, but 

become propositions of mathematics, just as, by a different level analogy, propositions of 

mathematics become propositions of physics. Thus, within the scope of this analysis, a 

meaningless logical proposition becomes a “mathematical proposition”, a proposition with 

“mathematical signification” by the loading of logical symbols with mathematical significations. 

As a result, mathematics is regarded here as more than the Wittgensteinian meaning of 

mathematics as a method of logic. 
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A referential mathematical object: ur-elements 

Let us start by indicating that there are mathematical objects important for a 

conceptual analysis such as this one, which however will not be considered unless 

comparatively, on a conceptual level, as concepts of reference. One single such object 

will be mentioned here, important for both classical Cantorian set theory and class 

algebra: the ur-elements.
2
 Two different mathematical objects (and implicitly concepts) 

will be specified in this context: the set and the ur-element. Intuitive expression: “An ur-

element is a mathematical object which: has nothing as its component; is not a set; can be 

a component of a set.”
3
 Suggestive expression: “Ur-elements are the smallest (most 

limited) mathematical objects”. Intuitive expression: “Comparatively, in class algebra, a 

                                                 
1
 NBG is the abbreviation for ”von Neumann-Bernays-Gödel set theory”. 

2
 Intuitively, they have the meaning of “primary” elements or “atoms”. 

3
 In the class algebra, the empty class   is a mathematical object which: has nothing as its component; is a 

set; can be a component of any class excepting  . 
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proper class is a mathematical object which: has sets (only sets) as its components; is not 

a set; cannot be a component of other classes (proper classes or set-classes)”. 

Observation: In class algebra, sets are classes which have sets as components, and can be 

components of other sets as well as proper classes. Suggestive expression: “Proper 

classes are the largest (most comprehensive, extended) mathematical objects.”
4
  

 With respect to ur-elements in this limited introductory context, we take the 

symbol ”” as intuitively meaning that “something” is an element of “something” which, 

by definition or construction, is a set: 
set

ba . Referring to the theories operating with the 

concept of ur-elements, on a conceptual and propositional level,
5
 the following remarks 

are clarifying:  

u – ur-element ; x – set ; y – set 

Propositions: ” xu ” ; ” xu ” ; ” xy  ” ; ” xy ”  have sense. 

Propositions : ” ux ” ; ” ux ” ; ” uu ” ; ” uu ” do not have sense.  

Referring to proposition ” ux ”(” ux ”), anticipating certain later considerations, 

some clarifications are in order. In the classical (Cantorian) set theory, if e is an element, 

then proposition e  has sense, but is false. Proposition e  has sense and is true. 

Compared to the empty set   that contains no element and belongs to certain sets,
6
 an 

ur-element contains also no elements, belongs to some sets, but, conceptually, it is 

fundamentally different from the empty set. In class algebra, propositions ” yx  ” ; 

”x y ”, and ” Ux ” ; ” Ux ”, where x and y are sets and U a proper class (which is 

not a set [here the class of all sets]
7
) both have sense. (For a proper class P, different from 

U proposition ” rPx ” it can be true or false. Proposition ” Ux ” is always true, while 

” Ux ” is always false.
8
) As long as, by the construction of the theory, no proper class 

                                                 
4
 In some sense, the ur-elements are minimal ”mathematical objects” while proper classes are maximal 

”mathematical objects”. (Observation: Minimal and maximal are only suggestive formulations, and do not 

relate to any order relations per se.) 
5
 A mathematical proposition is a mathematical statement such as: ”There are infinite sets.”; ” 75  ”. 

6
          SP  ;2,1,2,1,SP  ;2,1S   

7
 In the paragraph Russell’s Paradox, the class of all sets is noted with  , while in class algebra the class 

noted with U is the universal class. It is shown that U =  . The difference in notation only counts where 

these are explicitly introduced as denoting objects and concepts of a certain type, specific for the given 

mathematical context. Thus at the level of proper classes no difference is made.  
8
 These aspects are important in demonstrating certain theorems in class algebra. (Some with non-intuitive 

results).  
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belongs to a class – in the sense that there cannot be a membership relation –, 

propositions ” xU ” ; ” xU ” and ” UU ” ; ” UU ” are neither true nor false, they 

simply do not have sense. Thus, in a brief formulation, ur-elements are in this sense dual 

to proper classes: ur-elements cannot have components that belong to them, proper 

classes are not components, cannot belong to classes. In turn, as it will be shown, some 

propositions of class algebra, such as U , although intuitively “contradictory”, do 

have a mathematical sense.  

 With reference to ur-elements and previous clarifications, the logical-symbolic 

notation:  

     uxxuxuxu   

abstracting, in a first approximation, from the legitimacy of using logical quantifiers, has 

no mathematical sense, although it is logically-formally possible. 

 

The classical set theory 

The classical (naïve; Cantorian) set theory has three fundamental concepts: 

element,
9
 set

10
 and membership relation

11
 between elements and sets. To put it very 

briefly: in the classical (Cantorian; naïve) set theory
12

 a set is a collection of objects 

(elements) grouped as such (by individualization:  n21 e,...,e,eM  ) or grouped by 

certain properties (the principle of abstraction:   ePeM   shortened symbolic notation 

for the truth set of the predicate P(e) [in this case a property].
13

 

 The following observations are made on the level that we consider to be 

conceptual clarification. Does predicate  eP  individualize only certain objects by their 

having a certain property or does it also define the set formed by these elements? In the 

most fundamental, original understanding, predicate  eP  simply individualizes certain 

objects which this way receive the generic name of elements. In this understanding, a 

                                                 
9
 The element is a primary notion with intuitive content.  

10
 So is the notion of set.  

11
 The membership relation is also a primary notion with intuitive content, but for this relation a formal 

algebraic support will also be constructed. We can also say for yx : ”x belongs to y”; ”x is an element 

of y”; ”x is a member of y”; ”x is in y”. 
12

 For this theory, the abbreviation CST will be used.  
13

  xP  is a predicate variable of valence 1. 
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notation such as ”  ePe ” – as a convention of conceptual clarification – would only mean 

that “object e” has the property ”  eP ”. To make one step forward in considering “all 

objects” that have the property ”  eP ” means to introduce a new concept into the 

language, even if only as intuitive support: that of “set”. And, also, to associate it with a 

symbol: ”   ePe ”, and perhaps also to give an index to it: “    ePeM
index

 ” . Only this 

way can it be said that predicate P defines a set. As concerns symbolic writing, L denotes 

the language of classical set theory – with the symbol   (braces) for representing sets – 

and L+  denotes the language obtained from L by adding a symbol (index) for each set.  

 After these clarifications, we explicitly state the principle of abstraction for its 

importance in the present analysis: “Any property (predicate) P(x) defines
14

 a set, 

generically noted   xPx , whose elements are precisely those x elements that have the 

P(x) property for which proposition P(x) is true”.
15

 With no further comments, we 

generalize the previous aspects with the following statement: “The mathematical object 

constructed (defined) by a formula  x  over the elements (whether or not these elements 

are sets) has the nature of a set.”
16

 This statement is important in the distinction between 

CST and NBG: in class algebra the mathematical objects constructed by formulae  x  

over classes can have different natures. 

Observation: Using as property “the property to be a set”, apparently nothing prevents 

one from speaking about the “set of all sets”. In other words, through its premises, the 

CST does not prevent the construction of sets (mathematical objects) on the basis of 

certain principles of abstraction formulated highly generally, as is the case of “the set of 

all sets”. This expression leads however to a logical contradiction (the violation of the 

                                                 
14

 The sense in which the property of certain objects defines a set and in this sense defines the objects in 

question as its elements will be clarified later on.  
15

 The following equivalence in CST (axiom of extensionality), with direct reference to two sets X and Y: 

 YxXxxYX   sets the condition for two sets to be equal (in extension): they are equal if 

and only if they are formed with the same elements. According to the principle of extension, the set 

  xPx  is uniquely determined.  
16

 There have arised quite soon a series of problems within the CST in connection with the set-like nature 

of certain objects thus constructed. Let us cite one single example: Cantor’s Antinomy: “The set of all 

cardinal numbers is contradictory”. 
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logical principle of non-contradiction: an object cannot be A and non-A in the same time 

and under the same relation).  

 In what follows, the formal algebraic construction of relations will be chosen as 

subsets of a cartesian product of sets.
17

 In this case, with a set of elements *E  and a set of 

sets *M  given, defined and constructed as agreed above, the binary relation  

algebraically denotes a subset of the Cartesian product ** ME  . Let the algebraic 

definition of the membership relation be a subset of the cartesian product: ME  , where 

  "elementan   is  e"ePeE   is considered the set of all elements and 

  "set a is  S"SPSM   is considered the set of all sets. Algebraically:  R,M,E   , 

where MER  . Nothing prevents such a definition in classical set theory with the 

observation that algebraically the relation is not well-defined if E or M are not sets. In 

this context the traditional line will be followed, which shows that “the set of all sets” is 

not a set.
18

 For a start, however, 
*E  and 

*M  are considered different from E and M.  

 In the context of conceptual analysis, the following questions can be clarifying: 

“From the point of view of the membership relation, are the following relations well-

defined:  *E

** R,E,E ,  *M

** R,M,M ,  **EM

** R,E,M ?”. The problem goes down to the 

following questions: “Can an element belong to an element?”; “Can a set belong to a 

set?”; “Can a set belong to an element?”. The first observation has a strictly formal 

character, with emphasis exclusively on algebraic formalism. If *E  and *M  are accepted 

as sets, nothing prevents the algebraic construction of relations by the graphs *E
R , *M

R , 

**EM
R . In this formal algebraic sense relations are well-defined. There are however 

restrictions imposed by conceptual limitations.
19

 Simple and suggestive examples will be 

given, compared with corresponding ones of class algebra. A philosophical observation 

to be made in this case is the following: the symbols of the highly abstract formal 

algebraic level are loaded with significations, even if all mathematical, and external to 

                                                 
17

 In the class algebra the relations are subsets of a cartesian product of classes. 
18

 It is possible to perform a complementary analysis of the concept of “set of all elements”. It is not 

presented here.  
19

 The way these “restrictions by conceptual limitations” are correlated with primary notions and the 

axioms of theories is not treated here. These will only be exemplified with reference to the naïve set theory 

and the NBG axiomatic theory of sets (class algebra).  
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this strictly formal algebraic component. In other words, there are different “contents” of 

significations of the same algebraic formalism in naïve set theory and class algebra.  

Let the sets A, B, and C be defined as follows:     1,2,1C  ,2,1B  ,1A   

     2,112,11  ;      1,2,111,2,11  . 

Some aspects to note:  

CA . A set can belong to another set. A set can be constructed with any set to 

which it will belong. Thus, let the predicate that states about a certain mathematical 

object X that it is a set be ”   "set a is X"XP  ”. The notation of the convention of 

conceptual clarification ”   "set a is X"XPX  ” only signifies that “object X” has the 

property of “being a set”. Let us presuppose that we are situated in L+. How is it possible 

to construct a set which has as an element the set-element X? The emphasis in the answer 

is on the signification of the conceptual level, keeping the construction however in the 

formal logical-mathematical framework. In this case the correct formulation of the 

principle of abstraction is important.
20

 Thus, the notation   "set a is X"XPX  is clear in 

the sense that it states about the individual object X that it has the property of being a set 

(perhaps among other properties it may have). The notation with braces  : 

  "set a is X"XPX   changes radically (or in this case even “dramatically” for the CST) 

the signification which comes to involve all objects that have the property of being a set. 

For now, nothing prevents us from considering the object that this notation implies to be 

a set. In order to simplify the expression, we index this hypothetic set with  : 

  "set a is X"XPX  . What is essential for this case is the fact that we have 

“squeezed” the individual object X, using only its property of being a set, among the 

other objects with this property, all members of an object  , presupposed to be a set by a 

principle of abstraction. If it happens to be proved that object   is not a set, then the 

                                                 
20

 It is possible to develop a conceptual analysis with its specific relevance for this case, and otherwise, by 

differentiating two principles of attraction. They will be symbolized thus: I. (the one used in the present 

analysis)   ePe  and II.   ePDe  where D is a set called domain and De can be considered 

restriction. As restriction, it can be expressed by   De:eP   and, with this observation, the principle of 

abstraction is rewritten     ePeP , having the form of two principles of abstracion applied to the 

mathematical objects e.  
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situation becomes problematic. Let us put this aspect aside, and formulate the 

requirement to construct another set to which object X belongs by virtue of its property of 

being a set. Moreover, we investigate the possibility of constructing the set which only 

has as its element object X by virtue of his property of being a set. In the terminology of a 

different theory (class algebra), we shall attempt the construction of a “singleton” with set 

X: the set with the single element of set X.  

 Let the object X be completely (well) defined as follows: “X is one object (only) 

with properties:  p,p,...,p,p set  a  isn21 . We note the property of being a set by P(M) and 

the cumulative property of having the properties n21 p,...,p,p  by  n21 p,...,p,pP . Let us 

construct the set of all objects which, if having the property of being sets, then also have 

the properties n21 p,...,p,p  (and only these). In the symbolization proposed above, it 

returns to noting the set formed by these objects like this:     n21 p,...,p,pPMPy  . 

According to the logical principle of identity, there is but one such object, which is X. In 

singleton the expression set “a set X” is corresponding to P(M) and a is the correspondent 

of  n21 p,...,p,pP . This way, by an object well-defined by its property of being a set but 

also by other properties – this is what “a set x” signifies – a new set has been constructed, 

the set formed with element set X:  X . So:       Xp,...,p,pPMPy n21  . In 

conclusion: “For any set X there is / there can be constructed a set to which it belongs”. 

Moreover, according to the axiom of extension, it is immediately apparent that there is the 

inequality  XX   as a result of the two sets being formed with the same elements.
21

 

 In what follows, some symbolic notations will be presented in order to underline 

the conceptual differences in CST presented here, without further comments. 

Example: ” number  natural :p1 ”, ” numbereven  :p2 ”, ” number prime :p3 ”, 

”   321321 pppp,p,pP  ”.     2p,p,pPxX 321  . Evidently, X (or  2 ) is not 

associated with property  321 p,p,pP . In CST, 2 is not a set and therefore it is not 

associated with property P(M). It can be seen thus that in notation 

      n21 p,...,p,pPMPyX  , property P(M) is essential. In the convention adopted 

                                                 
21

 The result can of course be demonstrated formally etc., but this aspect is not important here.  
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for braces  , the presence of braces implies the property P(M). How is then set   2  

represented? This way:       321 p,p,pPxyy2  . 

Completion. There are theories which try to define all notions as sets. This is the case of  

the Zermelo-Fraenkel system. In this system, the natural number 2 is defined as a set like 

this:   , . In class algebra NBG singleton is defined like this: 

   xyUxyx  , where Ux  is the equivalent of the property of being a set 

(P(M) in the notation above.)
22

 

Observations. Any set can belong to another set, and with any set can be constructed 

another set to which the first belongs. Comparing these with the situation in class algebra, 

a series of major differences can be noticed. In case of classes such a statement is not 

true: it is not valid for any class that there is a class which belongs to it. It is only valid 

for class-sets; what is more, the condition of membership to a class is a necessary 

requirement for a class to be a set. The conceptual distinctions in the two cases have 

origins and consequences which significantly distinguish between the theories.
23

 

 Other remarks are also formulated in this analysis about the sets above.  

BABA  . A set is included into another set and does not belong to it.  

CACA  . A set can be included into a set and at the same time belong to it.  

 2,11  is a legitimate notation and means the membership of element 1 to the set 

formed with element 1. The general case  XX  discussed above means the 

membership of element X (with the property of being a set, among others) to the set 

formed with element X.  

 What can be said about notation 11 ? The conceptual level referred to here (that 

of CST) implies, at is has been said, three fundamental concepts: element, set, 

membership relation. Regarding the present analysis, limited to a conceptual-

philosophical level, we associate the following interpretation of the membership relation 

, resulted from certain restrictions imposed by conceptual limitations. The membership 

relation  only makes correspondences between elements of different conceptual levels 

                                                 
22

 U . 
23

 Such aspects of class algebra will be treated in the followings, but here things are presented 

comparatively for the sake of conceptual distinctions and clarifications.  
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and in only one direction: elements belongs to sets (“element”  “set”). Formally, only 

the relation  R,M,E  is legitimate. In particular cases with *E  and *M  relations 

 *E

** R,E,E ,  *M

** R,M,M ,  **EM

** R,E,M  are not legitimate.  

Completion. The CST contains notions and operations constructed so that they make 

correspondences only between elements on the same conceptual level. 

Examples. Notation  2,11  is not legitimate. The relation of inclusion is only defined 

between sets. Notation  2,121   is not legitimate because the operation of union is 

defined only between sets. Furthermore, notation     21  is legitimate while 

notation  21  is not legitimate. 

 Answering some of the previously formulated questions, we summarize all these 

aspects by saying: “An element cannot belong to an element”; “A set taken as a set 

cannot belong to a set. A set conceptually reconfigured as an element can belong to a set 

and there is always a set to which it belongs as its element”; “A set cannot belong to an 

element neither conceptually as a set, nor conceptually as an element”. For the sake of 

clarity, we illustrate it with some mathematical propositions:  1,2,11 ; 11 ; 

 1,21 , in these propositions the conceptual levels “element” and “set” are obvious; 

the symbol “l” denotes conceptually only the concept of “element”. In propositions 

     2,112,11  ;      1,2,111,2,11   the conceptual levels are “mixed”: 

symbol “l” denotes either the concept of “element” or that of “set”.  

 In the CST, in order for a mathematical entity to be a set conceptually, there must 

be, with one single exception:  , elements which belong to it. The empty set will also be 

discussed here: there are no elements that belong to it.  

 Continuing the observations above, let us further clarify the concepts of set and 

class.  

 The concept of set in its relationship with the concept of class is differently 

characterized in class algebra: a mathematical entity, especially a class x is a set if there 

is a class y, not necessarily a set, to which it belongs:  yxy  . As an observation on 

the level of language, the general expression “y belongs to classes” is not rigorously 

correct because there are classes that do not belong to classes provided that “belong” 

implies the relation ””. In other words, there are classes which are not sets, proper 
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classes which consist (only) of sets. Furthermore, as in CST the relation  is not defined 

(constructed) on sets or elements, as a binary homogeneous relation in senses 

 *E

** R,E,E  and  *M

** R,M,M , it is not defined this way in class algebra either: 

 CR,C,C . 

 

Russell’s Paradox. A logical criterion for a conceptual restriction 

It has been claimed that, in classical set theory, using as property “the property to 

be a set”, apparently nothing hinders the construction “the set of all sets”, and that this 

construction leads to a logical contradiction by violating the logical principle of non-

contradiction. In what follows, emphasis will be placed on the formulation of the 

mathematical problem, the highlighting of the logical contradiction, and a solution of the 

paradox, all on a conceptual level.  

 Formulation of the problem. No premise of CST prevents the construction of the 

mathematical object “the set of all sets” on the basis of a highly generally formulated 

principle of abstraction, an object which, according to the same naïve set theory, is a set. 

Let this be  :   "set a is X"XPX  . According to naïve set theory, in this case the 

following equivalence can be written: set a is XX   ( 1E ), an equivalence which, 

since   was also presupposed as a set, can also be written for  :  set a is . 

The principle of abstraction and the role of braces in the mathematical construction  P  

preserved at a signification level the concept of set. The membership relation however 

introduces the conceptual difference:  
setelement

 . 

Observation. The presupposition that   is the set of all sets and   is a set, means that 

  belongs to itself, so this means that there are sets that belong to themselves – we do 

have an example for this. In accordance with the naïve set theory and the logical principle 

of the excluded middle, if e is an element, and S is a set, then there are only two 

possibilities for the element/set relation, represented by the symbol ””: Se  or 

(exclusively) Se  (or written differently:   SeSe  ). Moreover, according to 

the observation above, it creates the possibility of membership or non-membership of a 

set to itself. 
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In what follows, we construct the set  XXXXM  . The previous 

considerations allow for the following observations: of X , X is a set and, 

considering X first as an element and then as a set, we are in one of the following 

situations regarding the element/set relation: XX  or XX , in theory neither of the 

two being interdicted in CST. Consequently, set M was legitimately constructed with 

predicate   XX:XP  . Since M is a set, according to the equivalence 1E  it can be 

written:  Mset a is  M  ( 2E ). 

 Highlighting the logical contradiction. Thus, considering M both an element and a 

set, in the element/set relation there are only two possibilities: MM  , and MM . The 

logic-mathematical analysis of the two possibilities leads to the following results:  

I. It is presupposed MM  . Then it results from definition 

 XXXXM   and the truth set of predicate   XXX:XP   

that M is a set and M has the property MM . Formally: 

 MMMMMM   that is,  MMMM  , contradiction.  

II. It is presupposed MM  (  MM ). The legitimate construction of M as a 

set and the ( 2E ) yields the result M . This result with the initial 

presupposition render the logical proposition MMM   true, which 

means that MM  . So a contradiction is obtained in this case as well: 

  MMMM   

Ultimately, in order to emphasize the logical content of a contradiction of logical 

principle, we consider independently the two results  MMMM   and 

  MMMM  . This way the  MMMM   equivalence is obtained, 

which violates the logical principle of non-contradiction.  

A solution of the paradox. The direction of solving the paradox treated here, with 

a philosophical interest for mathematical objects and concepts, is the one offered by class 

algebra (the von Neumann-Bernays-Gödel version of axiomatic set theory) in interaction 

with certain aspects of axiomatic set theory in the Zermelo-Fraenkel version.
24

 

                                                 
24

 The interaction is legitimate all the more the von Neumann-Bernays-Gödel axiomatic theory is 

considered a conservative extension of the Zermelo-Fraenkel axiomatic theory.  
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Russell’s paradox illustrated the way how logic can represent a criterion for the 

imposition of conceptual restrictions and distinctions in mathematical theory on a 

language level, and implicitly of objectual differentiations on the level of “ontological” 

significations. Certain such aspects will be analyzed in what follows.  

 

The class algebra 

The primary notion of class is used. Classes in general are noted with low case 

letters: x, y, z, … . 

 Axiom of Extensionality (A.E.) [corresponds to the Axiom of Extensionality of 

Cantorian set theory] 

 yzxzzyx   

The following result (R1.) is immediately deduced from this axiom: “Any class x 

is equal with itself: x = x.” With the particular emphasis that any set is equal with itself, 

as well as any proper class (a class which is not a set; for example /U ).  

 A class x is considered a set if there is a class y so that yx  . This is a criterion to 

assess the nature of set of a mathematical object. A set can belong to a set or to a proper 

class; a set is composed only by sets. Proper classes are not sets but are composed only 

by sets. In the sense of representation  
classelement

ce  , proper classes (generic notation: pc ) 

belong to no classes, they contain elements, but cannot be elements. In an approach in 

which the logical apparatus is a necessary condition – mathematics is such an approach – 

the proposition ccp   is false. However, in a different approach it can be considered 

illegitimate. Philosophy or semiology can be such approaches.  

The present philosophical conceptual analysis, for mathematical results and their 

interpretation within mathematics, will use the perspective of logic as a necessary 

condition. Thus, in the interpretive version of the proposed analysis of conceptual 

clarification, the basic idea is to nuance the Wittgensteinian perspective on the relations 

between types of propositions: meaningful, meaningless and non-sense. In the spirit of 

the Tractatus, a formal logical proposition is meaningless, but it can become meaningful 

only by loading the symbols with factual meanings (senses). In the context of this 

analysis, a meaningless logical proposition becomes a “mathematical proposition” – 
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mathematics is thus much more than a method of logic – a proposition with a 

“mathematical sense”, by loading logical symbols with mathematical meanings 

(“senses”). 

 Coming back to class algebra, the notation convention for class x is:  xM  if this 

class is a set. When for certain theoretical interests the relation between class-set 

elements and proper class has to be emphasized, the  xM  representation is substituted 

by the representation Ux  having the same meaning, where U is the proper class of all 

sets.
25

 

The formula defined over classes which contains the variable x is noted:  x . 

Observations. 

i. Proper classes cannot be connected variables (there are no quantifiers above 

proper classes: pp c  ;c  ). 

ii. For the mathematical object constructed (defined) by an over class  x  

formula, it must be demonstrated for each individual case what the nature of 

the mathematical object is: class-set or proper class.
26

 

 

Class Definition Axiom (C.D.A.) 

The following mathematical proposition:  

      zzMxxz   

will be called: Class Definition Axiom (C.D.A.) 

 Consequence. It results from the Class Definition Axiom (C.D.A.) and the Axiom 

of Extensionality (A.E.) that: 

 

 
 
      yyxxyzyxxzzyzzMyxxzz

zx


































  

Thus, if y is a class, then: 

 yxxy   

In other words, a class is characterized (defined) by all sets that belong to it.  

                                                 
25

 U  
26

 The logical connector or in this case is an or-disjunctive. 
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The following remarkable classes are defined: 

The empty class:    xxx  . 

This class is important for several reasons. We present one of these reasons. 

Russell’s paradox has taken to a new mathematical object: the class of all sets U, which is 

not a set. Beyond CST and U, a problem – both in a philosophical and even mathematical 

sense – arises in the construction of class algebra. What is it that ensures the existence of 

sets? Can a set be “shown” apart from the employment of the concept on this intuitive 

support of CST? 

 Let us present for a start an explicit solution by explicitly postulating the existence 

of a set: the empty class   as an axiom. In the language of Zermelo-Fraenkel theory the 

Empty Set Axiom states that “There is a set for which not set is an element”. Formally: 

 xyyx  . In the language of class algebra, one of the formulations of the empty set 

axiom is just as explicit: “The empty class is a set”. Formally:    xMxxx  . 

 In what follows, we present a more general version, out of philosophical interest, 

of the existence of a mathematical object by an axiom under an implicit form: “There is at 

least one class-set.”, then later we will identify by a theorem such a particular object. The 

formal representation of the axiom is the variant:   Ucc  .
27

 Being certain this way of 

the existence of at least one class-set, all of the following mathematical propositions 

(axioms, definitions, inferences) are legitimate and on their basis such an object will be 

identified: it will be demonstrated that the empty class   is a set (class-set).
28

 

 The Axiom of Subsets 

  UyxyUx   

In words: “For any set (class-set) x there is a set y, so that yzxz  .” 

This axiom gives sufficient condition for a class to be a set. 

Theorem. U . 

Proof. 

                                                 
27

 Other symbolic representations are also possible, as is also the articulation with class U (defined by 

 xxxU   with over-class fomula:   ""  : xxx   etc. 
28

 In another, only suggestive expression we can say that we have an “axiom of existence” (A.E.) of a 

mathematical object and try to actually find such a (particular) object.  
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From the definition  xxx   and on the basis of (R1.) the following result 

(R2.) is demonstrated, by reduction to absurdity: “For any class-set x: x .” In other 

terms: “For any class-set x the proposition “ x ” is false”. 

 The basic idea is that of the use of condition   0pv   of the logical definition of 

material implication qp   and the criterion of being a set given by the Axiom of Subsets 

(A.S): 

x, y– classes; 


 yzxzzyx

def

 ; A.E.:  Ucc  ;  

  


1

0

czzzc 












 ; 

A.S.: yc 
29

; Uy  . 

In conclusion, the over-class formula   "xx"x   constructs (defines) a class: the 

empty class   which is a set (it can be written  M ). 

Observations. 

i.) As it will be proven, U  makes possible the construction of new class-set 

mathematical objects. For example:         ,....,,   
30

 

ii.) Leaving aside U  as a theorem, in class algebra the Axiom of Infinity postulates 

the existence of a class-set, the set-nature of the empty class   in relation with this 

class-set
31

 and the possibility to construct new sets starting from sets which belong 

to the postulated class-set, with the important property that these new sets also 

belong to the same class-set: 

The Axiom of Infinity
32

 

There is a set x with the properties: 

                                                 
29

 Axioma submulțimilor nu spune nimic despre clasa-mulțime y, în particular nu interzice ca aceasta să fie 

c. Exemplul anterior din TCM:    CA  C,A  ,1,2,1C  ,1A  , este sugestiv în acest sens. Mai 

mult, nici nu ar fi necesar ca y să fie mulțime. Toate aceste precizări nu sunt însă necesare pentru 

demonstrație.  
30

 The signification for    and  z  with z–class will be given later on. 
31

 This result in the above theorem would be directly obtained considering that cy   by virtue of the fact 

that the existence of the class-set c was postulated by the axiom of existence: thus there is a set c so that 

c . 
32

 In a different formalization:    xyyyxx   
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1.) x  

 2.)   xyyxy   

 Universal Class   xxxU  . 

 We demonstrate that this class (U) is the class (“set”) of all sets ( ) in the 

formulation of Russell’s Paradox.  

 Theorem. U  

 Proof. 

 This demonstration is based on the definition of the concept of set in its 

association with the membership relation to a class. It follows a series of logical steps 

which outline conceptual aspects deriving explicitly from the “content” of the steps and 

not the accompanying comments.
33

 We take mathematical object “the class of all sets” 

and note it with  . According to the notation convention M(x) for x class-set, this goes 

back to the representation:  xMx   or:   xMx , or, in the representation in 

class-form according to Class Definition Axiom (C.D.A):   xx . From the Axiom 

of Extensionality (A.E.) and the definition of inclusion “” results the following 

equivalence for classes: xyyxyx  . In this case: 

UUU  . 

” U ”  

 

          















zzMzzzMzzMxxxzUz

.1Rx
  

so    UzUzz . 

” U ” 

   


 
          UzxxxzxxzzzMzzzMzMz

z

.1R




 

so   UUzzz    

consequently  UUU  the two mathematical objects: universal class 

and the class of all sets are one and the same object, they represent the same class.  

                                                 
33

 From a strictly formal point of view, the demonstration can be schematized and the number of steps 

reduced. 
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 This class is not a set, it is another mathematical object (it CANNOT be written 

 UM  or  M ). It is a class called: proper class.
34

 Important observation: From a 

logical-linguistic viewpoint, presupposing that this “mathematical object”   is a set in 

the classical sense of Cantorian set theory, one gets to a logical-mathematical 

contradiction. This contradiction was mathematically eliminated by the construction of 

axiomatic systems of set theory (Zermelo-Fraenkel; Von Neumann-Bernays-Gödel [class 

algebra] etc.). In class algebra /U  is a class which is not a set, any set is a class, and 

any class is only characterized by the sets that belong to it.  

 For two classes x and y the intersection ”” of the classes x and y is defined as 

the class:  

 yzxzzyx   

 This definition is also found in classical set theory. It generates a class (a 

mathematical object) starting from the explicit consideration of one single class.  

 For the x class the following class is defined:  

 The intersection of the elements of the x class
35

 

  yzxyyzx   

 Expressed in words, x  is the class formed of the sets that belong to all the sets 

that belong to the x class. This class and its definition is specific to class algebra. It has an 

intuitive support in the classical definition of set intersection in Cantorian theory applied 

to the “composition” of class x.  

 In the demonstrations that follow, the logical definition of material implication is 

essential.  

    yPyMyx   or inferring that y is a set   yPyx   

which is a short notation for the truth set of predicate P(y). It is important to emphasize 

that it is the consideration in a global sense of the “truth” of the compound proposition 

                                                 
34

 Observation. There are other theories which accept the existence of proper classes among fundamental 

mathematical objects, or, at a conceptual level, the concept of proper class as a fundamental concept. The 

Morse-Kelley version of set theory admits the existence of proper classes as fundamental mathematical 

objects; moreover, it allows by its axioms the quantification over proper classes, which is not permitted in 

NBG (as quantification is limited to sets only).  
35

 Another name for this “operation” is: Set Product (For a class, all sets that are elements of each set that 

belongs to the class are members of the Set Product.) 
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after the sign ”|”, regardless of the possible truth values of the elementary proposition. 

The following is a suggestive example in this sense, written for the sake of simplicity in 

the version of naïve set theory, and also for the sake of simplicity considering only 

natural numbers:  

 5,4,3,2,1,05y24y0yX

qpP

qp































  


 

 

Thus, for y = 1 the proposition p is true while the proposition q is false, for y = 5 q is true 

and p is false, for y = 3 both p and q are true, and for y = 7 both p and q are false. 

However, what matters is only the truth of the compound proposition P (after the sign ”|”) 

that we have conventionally represented here as “ qpP  ”. In what follows, we take 

this observation in a general sense and avoid logical details in notations and 

representations. Further on, two mathematical results are presented in the form of 

theorems.  

 Theorem. (of the intersection of an empty class with itself)   

 Proof. 

 According to the definition of the intersection of two classes x and y: 

 yzxzzyx   we have   zzz  from where, applying the 

idempotent law, the logical operator “ ” is obtained:   zz . Next, we 

analyze class  zz . According to the definition of the empty class and the Axiom of 

Classification, we have:     zzzMxxxzz  . According to the result 

(R1) the proposition zz   is false and so   zzzzzM  . It results then: 

    zzzzzMxxxzz  . Substituting this result in the equality of 

  zz , we obtain:      zzzzz . 

 This result presents no logical contradiction. The result is intuitive.  
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The basic idea in the following demonstration is the use of the condition   0pv   of the 

logical definition of the material implication qp   , and also the criterion of being a set 

offered by the Axiom of Subsets (A.S.).
36

 

 Theorem. (of the intersection of the elements of an empty class)  U . 

Proof.  

For empty class   we explicitly write the intersection of the elements of class   

according to definition: 





























qp

yzyyz


. Therefore only that y and z are 

presupposed for which we have sets M(y) and M(z),  and according to (R2) the 

proposition p is always false. Then for any set y [  y ] the implication qp   is true 

(the particular result mentioned above). In other words, the compound proposition after 

”|”:  yzyy 
37

 is always true. In conclusion, since we have presupposed the 

description of classes only by sets, it results that in these conditions z can represent any 

set and therefore class   is the class of all sets, that is, universal class U, and thus the 

theorem   = U is demonstrated.  

 This result presents no logical contradiction. The result is non-intuitive. It is just 

non-intuitive. Logically and mathematically it is correct. Basically it is the consequence 

of results based on logic using mathematically significant symbols. The propositions of 

logic are purely formal, logical symbols mean nothing outside logic.
38

  

We formulate the observation in this context that there might be problems of 

interpretation by the “loading” of logical symbols with certain significations taken over 

from a language for which logic may or may not be a necessary condition.
39

 Here we deal 

with the loading of logical symbols with mathematical significations. In the field of fact-

based sciences we deal with the loading of mathematical symbols (mathematical 

formalism) with empirical significations (for instance physical: mechanics, 

                                                 
36

 Another symbolic version of the Axiom of Subsets:     yMxyxM  . 

37
 In logical details there is a compound logical proposition  z,yP  with bound variable y and free 

variable z etc., aspects which are not of interest here.  
38

 “The propositions of logic therefore say nothing. (They are the analytical propositions.)” - Tractatus 6.11 
39

 For instance, for mathematical language and scientific languages logic is a necessary condition, but for 

artistic or theological languages logic is not (necessarily) a necessary condition. 
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electrodynamics, etc.). In the field of philosophy logic, mathematics, theoretical physics 

is loaded with epistemological significations (metaphysical, theological, etc.). For 

example, Wittgenstein explicitly states that mathematics is a method of logic and the 

propositions of mathematics are the equations, that it, meaningless propositions (pseudo-

propositions).
40

 Even if we admit this statement, it must be emphasized that the 

propositions of logic do not have mathematical content. On this line of interpretation 

mathematics is, among others, the loading of logical propositions with mathematical 

content.
41

 Moreover, mathematical proposition also express nothing about facts.
42

 

Starting with Galilei, the Book of Nature is written in a mathematical language and is 

usually shown by equations.
43

 It must be said again that the propositions of mathematics 

do not have a factual, metaphysical, theological, artistic or other content.
44

 

  These aspects regarding the loading of logical symbols with mathematical 

significations are completed with an observation about the demonstrations using the 

definition of the logical implication with false antecedent (  qp

0

 ). The observation 

refers to the vacuous truth associated to some propositions which claim about the 

elements of an empty set to have a certain property.
45

 There has been explicated the first 

                                                 
40

 ”Mathematics is a logical method. The propositions of mathematics are equations, and therefore pseudo-

propositions.” - Tractatus P 6.2. 
41

 In a semiologically less accurate, yet more “relaxed” and therefore more suggestive expression, 

mathematics is the loading of logical propositions with mathematical contents, significations, senses, etc. 
42

 ”Mathematical propositions express no thoughts.” - Tractatus P 6. 21. and  ” In life it is never a 

mathematical proposition which we need, but we use mathematical propositions only in order to infer from 

propositions which do not belong to mathematics to others which equally do not belong to mathematics. (In 

philosophy the question “Why do we really use that word, that proposition?” constantly leads to valuable 

results.)” – Tractatus P 6.211. 
43

 ”The logic of the world which the propositions of logic show in tautologies, mathematics shows in 

equations.” - Tractatus P 6.22. 
44

 ”Theories which make a proposition of logic appear substantial are always false. One could e.g. believe 

that the words “true” and “false” signify two properties among other properties, and then it would appear as 

a remarkable fact that every proposition possesses one of these properties. This now by no means appears 

self-evident, no more so than the proposition “All roses are either yellow or red” would sound even if it 

were true. Indeed our proposition now gets quite the character of a proposition of natural science and this is 

a certain symptom of its being falsely understood.” - Tractatus 6.111. We take these considerations as valid 

also in the case of  mathematical propositions. 
45

 A statement S  is ”vacuously true” if it resembles the statement QP  , where P is known to be false. 

Statements that can be reduced (with suitable transformations) to this basic form include the following: 

     xQxP:x  , where it is the case that  xP:x  . 

   xQ:Ax  , where the set A is empty. 

    Q: , where the simbol   is restricted to a type that has no representatives. 
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step of loading a logical proposition   p icalog with mathematical signification: 

   matematicaicalog pp  46
, where the mathematical proposition   p matematica

is “ x ”. This 

proposition is mathematically false. The next step is the consideration of the (compound) 

logical proposition “ qp  ”. The next step, starting from the mathematical falsity of the 

mathematical proposition “ x ” is the attribution of the value of logical falsity to the 

proposition “p” of the logical proposition “ qp  ”. The next step is the acceptance by 

logical considerations of the affirmation that “proposition p is false, the implication (the 

compound proposition ” qp  ”) is true”, having its consequences on the logical truth 

value of the proposition “q”: it can be true or false. The next step is the consideration of a 

hybrid logical-mathematical proposition: qx  , where the first proposition is 

mathematical, while the second is for now considered purely logical. The next step is the 

loading of the mathematical proposition with a signification which is alien to 

mathematics: “the elements of an empty set have a certain property”. Mathematically, the 

signification of the proposition “ x ” is the negation of the proposition 

“  xxxx  ”.
47

 The next step in the philosophical interpretation would be the 

introduction of vacuous truth in mathematics and the analysis of its consequences on 

linguistic level, ontological level, etc. At this point we remain at this illustration of 

possible further interpretations.  

 For more clarity let the following short completions be accompanied by a 

simple illustration. The propositions of logic and mathematics have their own “formal 

criterion” of truth which must be ensured. These are necessary conditions for the rational 

description of the world of facts. However, the propositions of logic and mathematics are 

not also sufficient conditions for the description of the world of facts. The propositions 

about facts must meet other specific criteria of truth as well. Scientific propositions must 

                                                                                                                                                 
Vacuous truth is usually applied in classical logic, which in particular is two-valued. However, vacuous 

truth also appears in, for example, intuitionistic logic in the same situations given above. Indeed, the first 

two forms above will yield vacuous truth in any logic that uses  material conditional, but there are other 

logics which do not.” - http://en.wikipedia.org/wiki/Vacuous_truth 
46

 The symbol “ ” denotes this load, by associating a mathematical proposition with a logical proposition 

which ultimately comes back to replacing the logical proposition p with the mathematical proposition 
m

p . 

47
 The possible consequences on the level of logical predicates with mathematical interpretations are not 

analyzed here. 
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meet the criteria of an “exterior truth” of empirical correspondence with facts.
48

 For 

example, a mathematical proposition is formal, symbolical, having no factual meaning, 

but by “loading” mathematical symbols with empirical signification (physical in this 

case) the proposition acquires a factual sense and only thus can it speak about facts. In 

this sense, a physical proposition must be mathematically true and empirically true. 

 As a completion, we construct, as merely a philosophical “application”, and 

without discussing the legitimacy or illegitimacy of the procedure, the loading of 

mathematical symbols with metaphysical content and offer a possible reading of this 

“mathematical signification of mathematical results”. The philosophical relevance or lack 

of relevance of this endeavour is not discussed here, it is just an illustration.  

Thus:   snothingnes nothing  

   thingsall universalsU  

The metaphysical reading of mathematical theorems:  

   : The intersection of nothing is nothing! 

 U : The intersection of nothing is all things! 

 

 The need for conceptual restrictions  

In order to highlight the problem, it must be specified what is the signification of 

the description of a class by the principle of abstraction, adapted to class algebra, 

understood here as starting from the logical signification of the notion of predicate. When 

the notion of logical predicate is introduced in logic, it is defined as:  

“Let X be a set and *Nn . It is called a n-ary logical predicate on set X any 

function βnX:P , where   n,1i,Xxx,...,x,xxX...XXX in21

orin    de

n    is 

the Cartesian product of set X with itself for n times, and β  is the set of all logical 

propositions.” The highlights are meant to emphasize the concept of set. Under these 

circumstances, to what extent can one speak about logical predicates or logical formulas 

defined by classes? For instance, in the formulation of the Class Definition Axiom 

                                                 
48

 ”It is the characteristic mark of logical propositions that one can perceive in the symbol alone that they 

are true; and this fact contains in itself the whole philosophy of logic. And so also it is one of the most 

important facts that the truth or falsehood of non-logical propositions can not be recognized from the 

propositions alone.” -  Tractatus P 6.113 
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(       zzMxxz  ) of class algebra, the notations  xM  to denote that class x is 

a set, and  x  to denote a formula defined by classes, containing the variable x-class are 

introduced beforehand.
49

 

In order to underline the importance of the conceptual level in various 

mathematical approaches, the following example is presented with respect to Zermelo-

Fraenkel theory.
50

 The basic idea of the theory, formulated here with reference to 

conceptual analysis, is to define all notions as sets. In this sense all mathematical entities 

of predicates and formulas (the variables) are sets. Next, we consider two of the axioms 

of this theory: the Axiom of Separation and the Axiom of Replacement.  

The Axiom of Separation 

The notion of definable part. Let the language be L+ (as previously defined) and 

let  x  be a formula of this language. We call definable part of D the collection of all 

elements x from D so that  x  is true. With this notion the Axiom of Separation is 

explained this way: “If D is a set, then any definable part of D is also a set.” Formally, 

with the symbols and significations of L+, it can be written:   xDx  . 

The notation   xDx   in the context of the formulation of the Axiom of 

Separation needs conceptual clarifications. For the sake of clarity and convenience, 

notions of class algebra will also be used in the explications.
51

 In the formula  x , x 

covers the collection (class) of all sets which is not a set. In this case   xDx   can be 

rewritten:   xUx  , where U is a proper class. It must be specified that there is not 

one single proper class  /U , but there are different proper classes. Generally speaking, 

different collections of “totality of mathematical objects of a certain type (especially with 

a certain property)” form proper classes. For instance: the class of all sets; the class of all 

cardinal numbers; the class of all ordinal numbers; the class of all groups, etc. In these 

circumstances it is natural to presuppose that a subclass of U, formed of course of sets, 

                                                 
49

 For example, Breaz Simion, Covaci Rodica - Elemente de logică, teoria mulțimilor și aritmetică 

(Elements of logic, set theory and arithmetics), Editura Fundației pentru Studii Europene, Cluj-Napoca, 

2006, p. 152. 
50

 The Zermelo-Fraenkel theory will be abbreviated to ZF. 
51

 Some notions are defined in this text, while others are not. Basically, the main notions and results of class 

algebra are supposed to be known.  
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can be a proper class. For example,   group"  is  x"xPUx   represents a collection of 

sets which is the class of all groups. Coming back to the notation by formula  x , 

  xUx  , theoretically formula  could select from the class of all sets a subclass of 

sets so that this subclass would be a proper class.   

The Axiom of Replacement 

The notion of application. If  y,x  is a formula of L+, then we can say that   

defines an application if for any x there is one single y, so that  y,x  is true. With this 

notion the Axiom of Replacement is explained this way: “Any definable application 

whose domain is a set is a function.” In the language of the Axiom of Separation the 

Axiom of Replacement is explained: “If D is a set then the restriction of the application 

defined by   at D is a function.” Formally, with the symbols and significations of L+, 

and with the symbol  y,x  which signifies an ordered pair,
52

 it can be written:   

    y,xDxy,x  . 

Remark. In what regards the correlation formula/function, the Axiom of Replacement 

offers a condition for a formula which “defines” an application to be a function: “If a 

formula  y,x  defines an application then it can be represented as a function f with the 

condition that   is restricted to a domain D which is a set.” 

 The following is an illustration of the signification of the Axiom of Replacement 

from the perspective of conceptual distinctions. In order to introduce a new axiom, the 

Axiom of Infinity, and to construct then the set of natural numbers (natural numbers are 

mathematical objects of utmost importance (!)), ZF theory introduces a new notion: the 

successor application. Thus for any set x it is defined:
53

 

   xxxS   

                                                 
52

      y,x,xy,x   
53

 By convention, in this theory sets are usually noted with low case letters. 
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As an immediate result:  xS  is a set (if x is a set then  x  is also a set
54

 and the union of 

two sets is a set
55

). 

The next important step is the addition of  xS , understood here as a “  x  formula” at 

L+ language. In this case   xS,x  at L+ language. 

 The successor application    xxxS   as application is not a function since its 

definition domain D is the set of all sets which is not a set. The successor application is 

however definable if its domain is restricted to a set. In the language of class algebra this 

is a conceptual restriction from the concept (/object) of proper class to the concept 

(/object) of class-set. (From the point of view of mathematical objects the objectual 

reference is changed).  

  

The construction of mathematical objects in class algebra 

To conclude, with respect to mathematical objects and the proposed conceptual 

analysis, we consider the following construction possibilities representative, sets and 

proper classes, in class algebra. These are presented and adapted so that their conceptual 

significations are emphasized.  

Definition. Singleton 

   xyUxyx   

Theorem.    UxUx   (     UxxM  )  

Proof. 

(The demonstration of the theorem, highlighting conceptual aspects, avoids the simpler 

ways of construction based on different results [such as: 

    xyxy  ;UxUx  ] and grounds such results on the theorem). 

“” (   UxUx  ) In the definition of the singleton, from xyUx  , for 

the condition Ux  the proposition Ux  is false ( 
0

Ux ) so the implication is true 

                                                 
54

 For CST we have shown that if x is a set then  x  is a set. A similar result is demonstrated about class 

algebra. In this context of ZF theory we shall accept without demonstration the theorem that if x is a set 

then  x  is a set. 
55

 This is also a theorem of ZF theory. 
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(

  


1

0

xyUx  ).  According to the consequence of the axiom of classification, an class 

is defined only by sets, consequently  


1

yM  ( Uy ), so    
  

1

xyUxyM   is still 

true. In the definition of the singleton, writing everything explicitly, we have: 

    xyUxyMy  , which means exactly the class of all sets. So 

  UxUx  .  

”” (  UxUx  ) Let us presuppose   Ux  .      UyyxUx  . So 

               xyUxyxUyyxxyUxyxUx 

. From where results:    
  

.II.I

xyUxyUyy  . In I. y denotes any set. We 

presuppose that the x from the singleton is a set ( Ux ). Then it represents a certain set, 

a unique set. According to I. and the consequent of the implication of II. it results that a 

certain set is equal with any set which, logically speaking, violates the law of identity. As 

a result, the presupposition Ux  in the context of singleton  x  is false ( 
0

Ux ), so we 

have   UxUx  , that is,   UxUx  , and thus the theorem 

  UxUx   is demonstrated.  

This theorem allows for reaching a direct result next, also relevant for conceptual 

analysis.  

 Theorem.    UU   

 The theorem   UxUx   says that if “something” is not a set, that is, that 

“something” is a proper class, then the singleton of that proper class is a universal proper 

class. It has been specified however that there are distinct proper classes. This way the 

singleton, besides preserving the conceptual nature of proper class of the new 

mathematical object, reduces the extension of “proper classes” objects to only one: 

universal class, and in this sense it brings different proper classes “to a common 

conceptual denominator”. In a metaphysical interpretation, without dwelling too much on 

it, the singleton which is in a way the exterior individualization of a proper class, 

recovers for this new proper class the sets which are absent from its content. 
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Observation.   UxxUx  . Metaphysical interpretive games can be interesting, 

but our only concern here is an analytic interest of conceptual clarification. Adding also 

the result   UU  , it can be stated that by the singleton the construction of proper classes 

“is saturated” in at most one step. Let us agree only here and only for this analysis to call 

the theorem   UxUx  the theorem of objectual limitation. Things are not the 

same for class-sets.  

 Extending those said above, the “conceptual signification” of the following 

theorem is also of interest for the analysis. It allows the construction of a new 

mathematical object of the same nature, characterized exclusively by the object that it 

starts from, namely a mathematical object of a particular nature: a set. The construction is 

permanently open, generative. Conceptually, it is the same level: the concept of set, the 

basic (original) objectual reference always remains the same, but the new possible objects 

are always different. Using, for the sake of suggestiveness alone, an analogy of a very 

different field, biology, it would be a sort of “cellular division”.
56

 (“set x” and “set  x ”, 

 xx  ;   x,x ).
57

 

 Theorem.    UxUx   

 Proof.  

I. . ”” (  UxUx  )  In order to stay, if possible, in the objectual-conceptual 

field outlined by the previous interpretation, we attempt the construction of a 

demonstration on the basis of the theorem of objectual limitation. We presuppose the 

proposition   Ux   to be true. We use the theorem   UxUx  . If Ux then 

  UxUx   but UU  and from there it results that:  

       UxUUUx  , an absurd result which contradicts the hypothesis: to 

presuppose   Ux  . Thus the implication   UxUx   is demonstrated.  

                                                 
56

 The analogy was presented only for its plasticity.  
57

 The “preserved” conceptual level is general: that of the concept of set. In a different respect, the new 

mathematical objects can get very different significations which, intuitively, on the level of distinctions, 

can be familiar. Thus, let us present very briefly the following particular example: 

           3,,, ;2, ;1 ;0   etc., with the remark that the construction of these 

new mathematical objects takes something more than the result of the theorem (“division”), it takes a 

supplementary mathematical context (a new “mathematical environment” in which natural numbers (!) may 

“evolve”). The game of analogies is limited to this much.  
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II. ”” (   UxUx  )  

i.) In what follows, we attempt to construct a demonstration on the basis of the theorem of 

objectual limitation   UxUx  . The hypothesis is Ux . We presuppose 

  Ux  . Then      UxUx  . In this first context we only have proper class U. 

The criterion which makes U proper was considered here “that of the logical 

contradiction” to which it reaches (Russell’s paradox). If the only proper class would be 

U, then         UxUxUxUx  , which contradicts the hypothesis and 

the theorem is demonstrated. However, the concept of proper class is not associated with 

a single representative. From 
  















x

xxxU  it shows that a formula  x  can construct a 

proper class. Thus, in principle, a formula  x  over class U can construct a proper class 

different from U. (Any proper class, as long as it is formed of sets, is included in U). 

Exemplifying by the predicative construction (with  xP ), class 

  group"  is  x"xPUx   is a proper class. In these conditions, when there are other 

proper classes in addition to U, it can no longer be concluded that 

        UxUxUx   because   Ux   may signify for  x  any proper class 

and thus there is no ultimate step of the demonstration   UxUx  , that is, the 

theorem is not demonstrated, so we cannot speak about the possibility of conceptual 

construction in the given sense.  

ii.) To demonstrate the implication   UxUx  , we may use, for example, the axiom of limitation of 

size formulated in a synthetic way: “O class C is proper if and only if there is a bijection of class between 

class C and the universal class U (the class of all sets).” (In another short formulation, the axiom of 

limitation is: UxUx  , where U is the class of all sets.) It can be observed that 

    U~xUx  .
58

 From the initial presupposition Ux  and the definition of the singleton 

   xyUxyx   results that class  x  has exactly one element: set x, which is contradicted by 

  U~x . This way the implication   UxUx   is also demonstrated. In conclusion, theorem 

  UxUx   is demonstrated.  

                                                 
58

 The equipotency relation “~” between classes is implied.  
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This demonstration is not interesting however on a conceptual level. Consequently, we configure another 

demonstration.  

iii.) The Axiom of Substitution. If yx:f   is a function and x is a set, then   xuuf   

is a set.  

We build up a demonstration using the Axiom of Substitution. According to the definition 

of the singleton, set x can form class  x . The class is correctly constructed since it is 

formed of sets. We consider  xy  . We legitimately
59

 build the surjective (“total 

surjective”) function    
 
xufxu ,xx:f

y  clasa 

  . Then, according to the Axiom of 

Substitution, class     xxuuf   is a set. Therefore the theorem   UxUx   is 

demonstrated.  

Observation. The Axiom of Extensionality (A.E.) immediately yields the result  xx  .  

These results (the theorem and the observation) allow, on the one hand, for the 

construction of new sets (   UxUx  ) starting from sets, and, on the other hand, in 

certain cases, for the “recognition” of another mathematical object as being a set, starting 

from a set (  UxUx  ). 

 Although interesting and offering further clarifications, the analysis of the 

“conceptual” role of braces   on “pair classes” will not be performed here. We only 

mention the definition and two results, with the observation that braces may contain two 

mathematical objects of different natures, in the sense that, although both are classes, one 

can be a class-set, and the other a proper class.  

 Definition. Pair class 

     yxy,x   

We shall present three results, with no demonstration or remarks, corresponding 

to those connected to the definition of the singleton, as two theorems: 

Theorem.   UyUxUy,x  . 

Theorem.   Uy,xUyUx  . 

Theorem.     x,xx  . 

                                                 
59

              2121 vvfv,ufv,ufv,uyvvxuuyxf   
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 In a given particular situation, the final theorem permits a synonymic language 

relation between the singleton and the pair class.  

 

Conclusion 

Analytical philosophy and Algebra have been the general framework of this 

analysis for discussing certain mathematical objects of class algebra and make certain 

logical-conceptual clarifications. The analysis made reference to a certain philosophical 

work, paradigmatic for analytical philosophy: Ludwig Wittgenstein’s Tractatus Logico-

Philosophicus. It has attempted to present a different, or at least complementary position 

regarding the relation of logic and mathematics, or more precisely of the propositions of 

logic and those of mathematics.  
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